
NASA Technical Memorandum 105586

/H-o7

F io

Deposition of Adherent Ag-Ti Duplex Films
on Ceramics in a Multiple-Cathode

Sputter Deposition System

Frank S. Honecy
Lewis Research Center

Cleveland, Ohio

:7"

(NASA-T_-I0558b) OEP_STTION OF AOHERENT

A_-Ti DUPLEX FILHS ON CffRAH[CS IN A
HULTIPL_-CATHO0_ SPUTTER DEPOS[TION SYSTEM

(NASA) 10 p CSCL 21E

3/o7

Nq2-2_225

UnCl d s

0086829

• April 1992

N/ A



7



DEPOSITION OF ADHERENT Ag-Ti DUPLEX FILMS ON CERAMICS

IN A MULTIPLE-CATHODE SPUTTER DEPOSITION SYSTEM

Frank S. Honecy

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

SUMMARY

The Adhesion of Ag films deposited on oxide ceramics can be increased by first depositing inter-

mediate films of active metals such as Ti. Such duplex coatings can be fabricated in a widely-used 3-

target sputter deposition system. It is shown here that the beneficial effect of the intermediate Ti film

can be defeated by commonly used in-situ target and substrate sputter-cleaning procedures which result

in Ag under the Ti. Auger electron spectroscopy and wear testing of the coatings are used to develop a

cleaning strategy resulting in an adherent film system.

INTRODUCTION

Active metals such as Ti and Cr have a history of use as intermediate coatings for joining noble

metals to oxide ceramics. These active metals react with the oxides to form a strong bond yet maintain a

metallic nature at their free surface to promote adhesion to metals which will not otherwise bond to the

ceramic. One such system uses a thin Ti coating to bond Ag to A1203 (ref. 1). This allows Ag, which

otherwise does not adhere well to AI203, to function as a solid film lubricant. Friction and wear testing

of A1203 pins on this duplex coating system has shown increased wear life and a reduction in friction
coefficient when compared to samples without the Ti interlayer.

These films were deposited by cathodic sputtering, a form of physical vapor deposition (PVD).

During the course of their development it was discovered that some of the techniques commonly used

within PVD to enhance the adhesion and purity of films could, when done improperly, actually degrade

the performance of the duplex coating. At this point a brief explanation of these techniques is in order.

(For a more thorough discussion see, e.g., ref. 2.) In cathodic sputtering, atoms of the coating material

are ejected (sputtered) from the cathode (target) as a result of positive ion bombardment. The ejected

atoms then condense on nearby surfaces to form a film. Backsputter etching is the reversal of this pro-
cess so that the substrate is bombarded by ions. This is done as a pre-deposition step which allows the

removal of surface contamination and oxides and can result in a cleaner substrate surface thereby pro-

moting better adhesion of subsequently deposited films. Target cleaning is the process of operating the

cathode at or near deposition conditions for a period to remove surface contamination, oxides, and possi-

ble cross contamination from other targets in a multi-target system. This is also done as a pre-deposition

step with other targets masked and the substrates masked, removed from the chamber or rotated away

from the target, depending on the system.

It will be shown here that pre-deposition substrate backsputter etching and target cleaning, when

not done properly, can result in the wrong material being deposited initially onto the substrate. It will

also be shown that these unintentional deposits can lead to premature lubricating film failure. Proce-
dures will then be outlined to minimize these effects.

This study consists of three parts. The first is to operate the PVD system in the target cleaning

mode with Si substrates as witnesses at different positions in the deposition chamber. The second is to



operate in the backsputter etch (substrate cleaning) mode with Si substrates on different underlying

supports. After removal from the PVD system the Si substrates are then examined by Auger electron

spectroscopy (AES). Third, to illustrate the effects, friction and wear tests are conducted on duplex

Ag-Ti coatings deposited onto Al203 disks which were first subjected to selected pre-deposition
treatments.

EXPERIMENTAL

AES analysis was done on a PHI-545 Scanning Auger Microprobe at 3 keV, _15 #m spot size and

1 pA beam current. The substrates were optically polished Si wafers which were ultrasonically cleaned in
acetone and ethanol before the treatments outlined below.

The depositions were made, separate from the AES analysis, in a Materials Research Corporation

Model 8667 r.f./d.c., Magnetron sputtering system. Shown schematically in figure 1, it is a batch process

machine with a rotatable table and three target stations spaced 90 ° apart on a 41 cm diameter. Each

target station has a movable shutter. In the r.f. mode power can be directed through any combination of

table and targets for simultaneous sputtering with or without substrate bias. Power can also be directed

through the substrate table alone for substrate etching. Target to substrate vertical spacing for this
study was 8 em.

For the target cleaning part of this study, Si substrates were positioned at 0, 90, and 180 ° relative

to the target position while operating the target at 1.1 Pa Ar, 500 W. r.f. for 5 min with the shutter

open. Targets used were Ag, Al, and Ti. During this, and subsequent procedures, targets not in actual

use were kept shuttered.

For the backsputter etching part of this study, the Si substrates were placed on 15 cm square A1

backing plates which had first been coated with approximately 0.5 #m of Ag, A1, Ti, or C. Etch condi-
tions were 2.7 Pa Ar, 500 W. r.f. for 5 min.

The substrates used in the friction and wear testing were polycrystalline A1203 pins and disks.
These, and the pin-on-disk friction and wear testing apparatus and procedures, are described elsewhere

(refs. 1 and 3). Essentially, 2.54 cm radius pins were slid against the disks for 60 min at 1 m/s and

0.5 kg in room temperature air. Three runs were made on each disk, each with a new pin. The friction

coefficient was continuously monitored during the run. At the end pin and disk wear were measured.

Two different combinations of pre-deposition treatment and deposition were tested for friction and

wear. These were designed to give the optimum condition (for this PVD system) and one of a number of
possible nonoptimum conditions.

Optimum Conditions:

(1) Presputter etch on a Ti backing plate

(2) Ti target clean, substrate at 180 °

(3) Wi deposition (25 nm)
(4) Ag target clean, substrate at 180 °

(5) Ag deposition (1.5 _m)



Nonoptimum conditions:

(1) Presputter etch on a Ti backing plate

(2) Ag target clean, substrate at 90 °

(3) Ti target clean, substrate at 180 °

(4) Wi deposition (25 nm)
(5) Ag target reactivation, <2 min, substrate at 180 °

(6) Ag deposition (1.5 #m)

Procedures for substrate solvent cleaning prior to introduction into the sputter chamber and conditions

for presputter etch and target cleaning were the same as those given for the Si substrates.

RESULTS

AES Analysis of Pre-deposition Treatments

For the AES analysis part of this study a number of materials were sputtered in the target cleaning
mode or used as underlying support to the Si substrates while backsputter etching, as outlined in the

experimental section. Only the Ag results will be shown here. All of the other materials used gave
similar AES results consistent with their respective sputter rates and Auger sensitivities.

The AES surveys are shown in figure 2. Survey (a) is from a solvent-cleaned Si wafer, taken as a

reference. It shows O, carbonaceous C present as an adventitious surface layer, and Si. The Si peak is

split. The low energy portion is indicative of oxide Si. The high energy portion is indicative of metallic

Si. This is consistent with the sub-stoichiometric nature of the native oxide present on Si (ref. 4). This
dual chemical nature of the Si peak is common to all of the spectra taken.

Survey (b) is from a Si wafer that had been positioned 180 ° from the Ag target while that target

underwent sputter-cleaning. It shows O, C, and Si as above. There is relatively less Si present than in

the reference spectra. Ag appears in this spectra. Also, small amounts of S and C1 are present.

Survey (c) is from a Si wafer that had been positioned 90 ° from the Ag target while that target
underwent sputter-cleaning. It shows the same elements that are present in the 180 ° sample, in dif-

ferent proportion. Ag dominates this spectrum. Carbon is present but is difficult to separate from the
Ag MNN peaks at 260 and 266 eV.

Survey (d) is from a Si wafer backsputter etched on a Ag coated backing plate. It is virtually indis-

tinguishable from survey (c) in Si, Ag, and O. It does contain less S, Cl, and C than survey (c).

Friction and Wear Testing

The pin wear data shows a significant difference between the two specimens. The specimen coated

under optimum conditions displayed about 20 times less pin wear (1.1 × 10 -6 =t=5×10 -8 cm 3) than the

specimen coated under the nonoptimal conditions (2.2)<10 -5 +1 × 10-s cm3). The friction coefficient

(0.4) was the same in both cases. Disk wear, all in the Ag film, was also measurably the same in both
cases.



DISCUSSION

AES Analysis of Pre-deposition Treatments

It is clear from figures 2(c) and (d) that there is significant Ag coverage of the substrate as a result
of target cleaning with the substrate at 90 ° to the target and, also, as a result of backsputter etching

with the substrate on the Ag backing plate. Estimating the amount of coverage from AES is difficult

because Ag is known to grow on Si by island formation (ref. 5). However, these two spectra show a near_

total attenuation of the Si signal. This, combined with the fact that the escape depth for 90 eV electrons

is approximately 2 monolayers (ref.6), indicates that the islands have nearly grown together. Reference 7

contains a study using ion scattering spectroscopy and AES on Ag coatings on (111) Si. It shows that

there is a small Si signal even at a coverage of 35 equivalent monolayers (EML). This suggests an esti-

mate for the Ag coverage of these two samples of 30 to 40 EML or 8 to 10 equivalent nm. Where one

would have expected the backsputter etching to produce a clean substrate surface it actually resulted in

the substrate being contaminated with the material that it rested upon. A similar result followed from

the substrate positioned at 90 ° while target cleaning; even though, with the shutters closed, there is no

clear llne of sight between the target and that position.

Even the substrate positioned at 180 ° to the target while target cleaning, shown in figure 2(b), has

significant Ag contamination. Applying the relationship that Zhu et.al. (ref. 5) found (between the nor-
malized intensity of the Si peak to coverage for Ag coatings of up to 4 equivalent nm) to the Si atten-

uation in this spectrum produces an estimated Ag coverage of 3 nm (_12 EML).

• As a comparison, directly under the target (0 °) the measured coverage is 1.15 #m, or approximately

4400 monolayers.

Summarizing, estimated Ag coverage at 0, 90, and 180 ° during target cleaning is 1.15 #m, 8 to

10 nm and 3 nm, respectively. The respective center-of-target to substrate distances are 8, 30, and
42 cm. Ficklan diffusion modeling does not fit this coverage versus distance-from-the-target profile. This

is not surprising. There is a strong directional dependence on coverage of substrates directly under the

target. This argues that a significant portion of the impinging atoms retain energy (velocity) from the

sputtering process. This is not true at the distances, greater than 50 mean free paths, to the other sta-

tions. Also, with a mean free path at 1 Pa of ,--0.5 cm, elemental transport is in a transition region
between viscous flow and free molecular movement. There is no accurate model which encompasses these

three regimes.

There are some elements present in the AES spectra that are the result of contamination, specifi-
cally, C1, S, C, and O. The source of the Cl here is unknown. S is commonly found in films deposited in

this system. It is residue from MoS 2 that is routinely sputtered in this system in support of research on
solid lubricants. C is always present on samples exposed to air, as is the O in the native oxide on the
surface of most metals.

Friction and Wear Testing

The difference in pin wear between these two samples shows how important pre-deposition steps can

be to coating life. The coating prepared under nonoptimum conditions showed more than an order of

magnitude greater wear. This indicates that the Ag lubricant film did not adhere well to the oxide
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substrate,in spiteof the useof a Ti bondlayer. This pooradherenceis attributed to the Ag "contami-
nation" from the inappropriatecleaningthat unintentionallyput Ag first on the A1203preventingtheTi
from formingthe desiredbondwith theoxide.

Note that havingpin wearasthesignificantdifferenceis consistentwith studiesdonepreviously
(ref. 1). Thetest periodwasnot longenoughto causecompletefailureof the films,whereotherdiffer-
encesmight haveappeared.Sothepartnerin continuouscontact,the pin, shoulddisplaythe greatest
effect.

Note,also,that the nonoptimumconditionchosenwasnot theworst possible.That wouldhave
hadthe disksonanAg coveredplateduringthe presputteretchinsteadof onTi. The chosenconditions
illustrate that theTi first depositedin the presputteretch(1 to 2 nm) is not enoughto anchorthesub-
sequentfilms.

Recommendations

Therecommendedconditionsfor minimizinginterfacialcontaminationarethoseoutlinedunderthe
optimumconditionslabelin the experimentalsection. Theserecommendationscomeout of this study
andout of personalexperiencewith this andothersystems;therefore,alongwith therecommendations,
someexplanationis in order. Regardlessof the natureof the coating,if backsputteretchingis usedto
preparethe substratefor coatingthen the substrateshouldbesupportedby the material that is to be
depositedfirst. An alternativewouldbeto placethesubstrateon a hackingplate that is the same
materialasthe substrate. In eitherevent,the backingplateshouldbeascleanaspossible.Target
cleaningprior to depositionshouldbedonewith the substrateasfar aspossiblefrom thetarget, or
masked,to minimizepre-depositioncontamination.Finally, individualtargetcleaningshouldtakeplace
immediatelybeforedepositionfrom that target to minimizerecontaminationof the target or the
substrate.

Theserecommendationsaredesignedto minimize rather than eliminate interracial contamination.

Backsputter etching will always result in mixing (redeposition) of materials adsorbed on the table. In

doing backsputter etching one is in the position of trading existing contamination (at very least the ad-

ventitious C and O present as a result of exposure to atmospheric conditions) for that which accrues as a
result of the etch. Similarly, when making a decision for or against pre-deposition target cleaning, the

choice is between putting down a lessor or greater amount of what is on the surface of the target as the

initial deposit. One must decide which effects, if any, are critical.

SUMMARY

It has been shown that significant pre-deposition coverage of substrates can occur as the result of

backsputter etching and target cleaning prior to PVD. The thickness of these coatings have been esti-

mated from AES analysis. It has also been shown that these pre-deposition coatings can adversely affect

the performance of subsequently deposited duplex coatings. Recommendations have been made to mini-
mize these adverse effects. Those recommendations are:

1. Backsputter etching should be conducted with the substrate on a backing plate of the same

material as that to be deposited first or on a substrate-similar material.



2. Target cleaning should take place with the substrate as far as physically possible from the target
or masked.

3. Target cleaning should take place immediately before the actual deposition.
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Figure 1.--Schematic of the MRC-8667 physical vapor deposition system. C.P.1, 2 and 3 denote cathode (target) positions.
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